Characterisation of self-assembled diblock copolymers optical metasurfaces by hybrid metrology approach

Irdi Murataj^{1*}, Angelo Angelini¹, Eleonora Cara¹, Samuele Porro², Burkhard Beckhoff ³, Philipp Hönicke³, Christian Gollwitzer³, Natascia De Leo¹, Luca Boarino¹, and Federico Ferrarese Lupi^{1*}

¹ Istituto Nazionale di Ricerca Metrologica - INRiM, 10135 Torino, Italy
² DISAT, Politecnico di Torino, 10129 Torino, Italy
³ Physikalisch-Technische Bundesanstalt - PTB, 10587, Berlin, Germany

*Corresponding authors' email: <u>i.murataj@inrim.it</u>, <u>f.ferrareselupi@inrim.it</u>

Abstract

Metasurfaces are gaining research interest due to their efficient miniaturization and novel functionalities, making them a popular choice for optical elements. Advancements in nanofabrication have reduced metasurface dimensions to nanometer scales, expanding their capabilities to cover visible wavelengths. However, large-scale metasurface manufacturing presents challenges in controlling dimensions and composition of dielectric materials. The combination of block copolymer (BCP) self-assembly and sequential infiltration synthesis (SIS) by Atomic Layer Deposition (ALD) offers an alternative for fabricating high-resolution dielectric nanostructures with tailored composition and optical functionalities, addressing these challenges. This work introduces a hybrid metrology innovative strategy that combines synchrotron-based traceable X-ray techniques to provide precise and reliable characterization of the refractive index of dielectric nanostructures, enabling comprehensive material characterization on the nanoscale. The study regards the fabrication of TiO₂ nanostructures model systems using SIS of BCPs to correlate material functionality with their chemical, compositional, and dimensional properties. Synchrotron-based analyses were integrated into physical models, validating laboratory-scale measurements for effective refractive indices of nanoscale dielectric materials.

Figure 1: scheme of the block copolymer templates, (lamellar and cylinder morphologies) undergoing sequential infiltration synthesis of TiO_2 in PMMA (light-blue) nanodomains, and after the uninfiltrated PS phase removal. The dimensions of nanostructures, and substrate are exaggerated and not in scale.