Conversion of Epitaxial Graphene to 2D diamane on Silicon Carbide

<u>Nunzio Motta</u>^a, Michael Reynolds^a, Dongchen Qi^a, Josh Lipton-Duffin^a, Joseph Fernando^a, Cameron Brown^b, Adrien Michon^c, Ahmed El Alouani^c, Marc Dubois^d, Isabelle Berbezier^{e,} Anton Tadich^f

^a School of Chemistry and Physics, QUT (4001, Brisbane, QLD, Australia)
^b School of MMPE, QUT (4001, Brisbane, QLD, Australia)
^c CNRS-CRHEA (06905 Sophia Antipolis, France)
^d Université Clermont Auvergne (63001 Clermont-Ferrand, France)
^e IM2NP - CNRS (13013 Marseille, France)
^f Australian Synchrotron (3168 Clayton, VIC, Australia)

Corresponding author email: n.mota@qut.edu.au

The miniaturisation of devices has become more challenging due to material and thermal constraints. To overcome the limitations of the Moore's law, the synthesis of diamane [1] (atomically thin diamondlike structures) has attracted interest to develop 2D electronics and spintronics.

Drawing upon our established expertise in the production of biand mono-layer graphene on semiconducting SiC substrates [2,3], we present a novel approach involving the passivation of graphene on 4H-SiC(0001) utilizing atomic

hydrogen under ultra-high vacuum (UHV) conditions [4]. Utilizing in-situ X-ray photoelectron spectroscopy (XPS) measurements at the Australian Synchrotron, we observe the conversion of approximately 50% of the graphene into diamane following 600 minutes of exposure. Additionally, we have achieved the transformation of epitaxial graphene into F-diamane through fluorination in a 10% F₂ in N₂ atmosphere at 70°C for 60 minutes. Our next steps involve probing the samples for their electrical properties and evaluating the device capabilities of these materials.

- [1] Piazza, Fabrice, et al., Carbon, 169 (2020) 129-133
- [2] Zebardastan, Negar, et al., Nanotechnology, 34.10 (2022) 105601
- [3] Gupta, Bharati, et al., Carbon, 68 (2014) 563-572
- [4] Reynolds, Michael et al. In preparation (2024)