Imaging MEMS motion at nano scale by time-resolved scanning electron microscopy

Mohamed Zaghloul^{a,b}, Abbas Kosari Mehr^{a,b}, Riccardo Bertacco^{a,c}, Simone Cuccurullo^a, Federico Maspero^a, Giulia Pavese^d, Hao Chen^{a,b}, Aldo Ghisi^d, Alberto Corigliano^d, Silvia M. Pietralunga^{b,e}, and <u>Alberto Tagliaferri^{a,b}</u>
^a Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32 (20133, Milano, Italy)
^b CNST, Istituto Italiano di Tecnologia (IIT), Via Rubattino, 81 (20134, Milano, Italy).
^c Polifab, Politecnico di Milano, Via Giuseppe Colombo 81, (20133, Milano, Italy).
^d Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano, Piazza Leonardo da Vinci, 32 (20133, Milano, Italy)
^e Institute for Photonics and Nanotechnologies (IFN)—National Research Council (CNR), Piazza L. da Vinci, 32, (20133, Milano, Italy)

Corresponding author email: alberto.tagliaferri@polimi.it

Design and fabrication of micro-electro-mechanical-systems (MEMS)would greatly benefit from a local and direct measurement of their in-operando dynamics on a point-by-point basis with sub-micron resolution. We introduce and discuss the implementation of dynamical imaging of MEMS by time-resolved scanning electron microscopy (TR-SEM). MEMS resonators are actuated in-operando close to their resonance frequencies, and a synchronized comb of electron pulses is used to image stroboscopically the device at a controlled time delay with respect to the beginning of its oscillation period.

We demonstrate the acquisition of stroboscopic movies by a proper sequential acquisition of secondary electron signal. Unprecedented information about local trajectory is provided, in the microsecond scale and at tens of nanometer lateral scale. In-operando nonlinearities in the response of the system, interpretable as related to system hardening are brought into evidence. We also discuss strategies to reach the ultrafast time scale*.

*Research supported by Project PE0000021, Concession Decree No. 1561 of 11.10.2022 adopted by Ministero dell'Università e della Ricerca (MUR), CUP, according to attachment E of Decree No. 1561/2022, Project title "Network 4 Energy Sustainable Transition – NEST".